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Abstract

This paper gives a mathematical exposition of a formula for the scattering
matrix for a manifold with infinite cylindrical ends or a waveguide. This
formula is well known in the physics literature and we show that a variant of
this formula gives the scattering matrix of the mathematics literature. Moreover,
we bound the difference between the scattering matrix and an approximation
of it computed using a finite rank approximation of the interaction matrix.
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Mathematics Subject Classification: 81U20, 35P25, 58J50, 35A35

1. Introduction

The purpose of this paper is to give a mathematical explanation of a formula for the scattering
matrix for a manifold with infinite cylindrical ends or a waveguide. This formula, which is well
known in the physics literature, is sometimes referred to as the Mahaux–Weidenmüller formula
[9]. We show that a version of this formula given in (1.7) below gives the standard scattering
matrix used in the mathematics literature. We also show that the finite-rank approximation
of the interaction matrix gives an approximation of the scattering matrix with errors inversely
proportional to a fixed dimension-dependent power of the rank.

Theorem 1. Let X = X0 ∪ (0,∞) × ∂X0 be a manifold with cylindrical ends—see section 2
for a precise definition and figure 1 for an illustration. Let {�n}∞n=0 be an orthonormal set of
real eigenfunctions of the Neumann Laplacian, −Hin, on X0 with eigenvalues −τ 2

n . Let {ϕλ}
be the same set for the Laplacian on ∂X0, with −σ 2

λ denoting the corresponding eigenvalues.
Let us define the interaction matrix by
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X0

x = 0 X1

Figure 1. An example of a manifold with an infinite cylindrical end.

WN,�(k) : L2(∂X0) −→ L2(X0),

WN,�f =
∑

0�τn�
√

N

�n

∑
0�σλ�

√
�

(
k2 − σ 2

λ

) 1
4 〈�n�∂X0

, ϕλ〉〈f, ϕλ〉, (1.1)

and the effective Hamiltonian by

HN,�(k)
def= Hin − iWN,�(k)WN,�(k)t .

Then for k ∈ R, the entries of the scattering matrix (see section 2) are given by

Sλ,λ′(k) = −〈(I − 2iWN,�(k)t (k2 − HN,�(k))−1WN,�(k))ϕλ′ , ϕλ〉 + O
(
N− 1

2 + e−�/C
)
,

(1.2)

if σλ, σλ′ � |k|, and � > k2. The error bound O(N− 1
2 ) is optimal—see section 6, and the

constant can be chosen uniformly for k lying in compact sets.

Theorem 2 provides a related result, for other values of k. Also, we remark that the matrix
defined by the leading term in (1.2), σλ, σλ′ � |k|, is in fact unitary—see lemma 5.1.

The physics literature contains several versions of the Mahaux–Weidenmüller formula.
One commonly found formula—see for instance [1, 11] and references given there—is given
as follows:

S̃f (k) = −(I − 2iW(k)∗(k2 − H̃ eff)
−1W(k)). (1.3)

Here

H̃ eff
def= Hin − iW(k)W(k)∗ (1.4)

where −Hin is the Neumann Laplacian in the ‘interaction region’ X0, a compact piece of the
waveguide or manifold with infinite cylindrical end, and W(k) is the frequency-dependent
interaction matrix. When applied in numerical simulations only a finite number of modes
of Hin are taken which results in a finite-rank approximation of W(k), as described in (1.1).
The formula, in its finite-rank version, is the basis of random matrix models in scattering
theory—see [6, section III.D]. For some recent experimental results related to the formula see
for instance [14].

Formula (1.3) is not strictly speaking correct. The advantage of (1.3) is that S̃f (k) is
unitary for real k by a linear algebra argument. It is also close to the correct scattering matrix
given below.
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As shown in proposition 3.5, the scattering matrix [2] which is standard in the
mathematical literature is recovered from an expression close to (1.3):

Sf (k) = −(I − 2iW(k)t (k2 − Heff)
−1W(k)) (1.5)

with

Heff = Hin − iW(k)W(k)t , (1.6)

and, with the notation of (1.1),

W(k)
def= W∞,∞(k).

In fact, −Heff = −Heff(k) is the Laplacian on X0, with a boundary condition that depends on
k; see lemma 3.2. Lemma 3.3 demonstrates the relationship between (k2 − Heff)

−1 and the
resolvent of the Laplacian on X.

This correct version (1.5) appears in [1], though again only a finite number of modes are
included. We note that our sign convention, while agreeing with [1], is not consistent with
many other authors. It appears that this sign is correct, and that the difference can be traced
to a different normalization of the scattering matrix. The difference between (1.3) and (1.5)
does not appear in many of the physics papers, where generally only an approximation Wa(k)

of W(k) is used, and the approximation is such that Wa(k)∗ = Wa(k)t . The operator Sf (k),
unlike S̃f (k), is typically not unitary for real k.

However, (1.5) gives what one might call the extended, or full, scattering matrix. To get
the usual finite-dimensional unitary scattering matrix (whose dimension changes at roots of
the eigenvalues of the cross section of the end), we put, for k real,

S(k) = −	
∂X0

k2 (I − 2iW(k)t (k2 − Heff)
−1W(k))	

∂X0

k2 (1.7)

where 	
∂X0

k2 projects to the span of the eigenfunctions of −
Y , with eigenvalue at most k2.
Here 
Y is the Laplacian on the cross section of the end. Proposition 3.5 shows that this
is the unitary scattering matrix which appears in the mathematical literature. Lemma 5.1
gives an algebraic proof that the matrix given by (1.7) is unitary for k ∈ R. Note that if
k ∈ R, the operator defined by (1.3) is unitary, but the finite-rank operator (corresponding to
a finite-dimensional matrix)

−	
∂X0

k2 (I − 2iW(k)∗(k2 − Heff)
−1W(k))	

∂X0

k2

with Heff given by (1.4), is not unitary in general, if W(k) takes into account contributions of
evanescent modes. Evanescent modes correspond to the eigenvalues of −
Y larger than k2.

Let us add that the papers [1] and [11] already have a fairly mathematically careful
description of the Mahaux–Weidenmüller formula. In [12] a detailed analysis of several one-
dimensional models is also provided. Another related approach to scattering/transport is due
to Fisher–Lee [5], see also [3].

Remark 1. We use the notation (u, v) to denote the Hermitian inner product, and 〈u, v〉 to
denote the form which is linear in both arguments.

2. Scattering matrix

In this section, we recall the general assumptions for manifolds with cylindrical ends and the
definition of the scattering matrix.

Our model is a manifold X with infinite cylindrical ends and smooth metric g—see
figure 1. In physics language that means a waveguide with periodic boundary conditions.
The same arguments apply to waveguides with Dirichlet or Robin boundary condition but
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we choose to avoid mild technical complications associated with that setting. For purely
notational reasons we also assume that there is only one end. Then

X = X0 � (0,∞) × Y, Y = ∂X0,

where X0 is a compact manifold with a smooth boundary Y. We require that g�[0,∞)×Y =
(dx)2 + gY , where gY is a metric on Y. Moreover, we choose our decomposition so that there
is a neighborhood U ⊂ X0 of ∂X0 on which g is also a product:

g�U = (dx)2 + gY .

Recall that {ϕλ} is an orthonormal set of eigenfunctions of 
Y . We use the convention

that the energy is k2, and kλ =
√

k2 − σ 2
λ , with the imaginary part chosen to be non-negative

when Im k � 0. We call the region with Im k � 0 the physical region. Given λ ∈ N, if k is in
the physical region, and with Im k > 0, there is a unique �λ(p, k) so that

(−
X − k2)�λ(p, k) = 0 on X (2.1)

and

�λ�(0,∞)×Y = e−ikλx
ϕλ(y)√

kλ

+
∑
λ′

Sλ′λ(k) eikλ′ x ϕλ′(y)√
kλ′

(2.2)

for some Sλ′λ. To see this we use the resolvent (−
X − k2)−1 which is a bounded operator
L2(X) → H 2(X), for Im k > 0:

�λ(p, k) = (1 − ψ)ϕλ(y) e−ikλx + (−
X − k2)−1([
X,ψ](ϕλ(y) e−ikλx))(p),

ψ ∈ C∞
0 (X), ψ�X0

≡ 1.

Since on X1 we have −
X = −∂2
x −
Y , separation of variables shows that �λ can be written

as in (2.2).
The resolvent, (−
X − k2)−1, continues meromorphically to

�σ(
∂X0 ) ⊃ {k : Im k > 0}, (2.3)

a Riemann surface branched at σλ’s—see [10, section 6.7]. We remark that this Riemann
surface is such that each kλ defined above extends to be a holomorphic single-valued function.
Thus, �λ(p, k) has a meromorphic continuation to �σ(
∂X0 ) which is regular for Im k = 0
except when kλ′’s are 0, or when k2 ∈ σ(−
X).

The full, or extended, scattering matrix is the infinite matrix

Sf (k) = (Sλ′λ(k))λ,λ′∈N.

For k ∈ R, the matrix more commonly called the scattering matrix is the finite-dimensional
matrix given by

S(k) = (Sλ′λ(k))σ 2
λ ,σ 2

λ′ �k2 .

We remark that if Im k > 0, while each entry Sλλ′(k) is well defined away from its poles, there is
not a canonical choice for ‘the’ scattering matrix. However, in general it is (

√
kλ/

√
kλ′)Sλ′λ(k),

not Sλ′λ, which has a meromorphic continuation to �σ(
∂X0 ) for each λ, λ′. We shall use this
continuation in the proof of the theorem.
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3. The formula

Let 
Y be the Laplacian on Y, and let
{
σ 2

λ

}
be the eigenvalues of −
Y , repeated according

to multiplicity, and let {ϕλ} be an associated set of real, orthonormal eigenfunctions of the
Laplacian on Y. Let −Hin be the Laplacian with Neumann boundary conditions on X◦

0, and let
{�n} be a set of real, orthonormal eigenfunctions of Hin.

First, we define the operator W(k) by explicitly giving its Schwartz kernel. Our starting
point is the representation of W(k) from [1] or [11]. We write p to represent a point in X0, and
y or y ′ to represent a point in Y; on U ⊂ X0 we may write p = (x, y), with {x = 0} = ∂X0.
Then, with

�n,λ(0)
def=

∫
Y

ϕλ(y)�n(0, y),

we follow the physics literature and define the coupling operator by giving its integral kernel
(with integration with respect to Riemannian densities) as

W(p, y ′) def=
∑
n,λ

√
kλ�n(p)�n,λ(0)ϕλ(y

′)

=
∑

n

�n(p)Pk�n(0, y ′). (3.1)

Here Pk = (k2 + 
Y )1/4 is defined by Pkϕλ = √
kλϕλ. While either choice of the square root

is possible, it is crucial that this is consistent with that used to define the scattering matrix; see
(2.2). The series converges in the sense of distributions. Hence, W(p, y ′) is understood as a
distribution on X × Y—see lemma 3.1 below.

This definition (3.1) appears normally in the physics literature. When we take all the
eigenstates then W (and especially Wt ) takes a very simple form given in the following lemma.
When, as is done in the physics literature, we take only finitely many states, the formula for
Wt is given in the remark after the lemma.

Let Ḋ′(X0) be the space of distributions on X supported in the (closed) set X0. We also
use the following convention: for s � 0 the space Hs(X0) denotes restrictions of elements of
Hs(X) to X0, while for s � 0,H s(X0) denotes elements of Hs(X) supported in the (closed)
set X0. See [7, appendix B.2] for a careful discussion: in the notation used there

Hs(X0) =
{

H̄(s)(X0) s � 0

Ḣ(s)(X0) s � 0.

With this notation in place we can formulate

Lemma 3.1. The operator (3.1) is equal to

W(k)g = δ∂X0 Pkg, g ∈ C∞(∂X0), (3.2)

where δ∂X0 ∈ Ḋ′(X0) is the distribution defined by

δ∂X0(ϕ) =
∫

∂X0

ϕ�∂X0
dvolY .

We have

W(k) : Hs(Y ) → H min(−1/2−,s−1)(X0), s ∈ R, (3.3)

and W(k)g�X◦
0
= 0. The transpose, W(k)t : H 1/2+s(X0) → H−1/2+s(Y ), s > 0, is given by

W(k)tf (y) = Pk(f�∂X0
). (3.4)
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Proof. To prove (3.2) we need to compute, in the notation of distributions, W(f ⊗ g), where
f ∈ C̄∞

0 (X0). The definition (3.1) gives

W(f ⊗ g) =
∑

n

(∫
X0

�nf

) (∫
∂X0

�n�∂X0
Pkg

)

=
∫

∂X0

(∑
n

(∫
X0

�nf

)
�n�∂X0

)
Pkg

=
∫

∂X0

f�∂X0
Pkg,

which proves (3.2) and, by duality, (3.4). The mapping property of W(k)t follows from the fact
that f �→ f�X0

takes Hs+1/2(X0) to Hs(∂X0) for s > 0, and Pk : Hs(∂X0) → Hs−1/2(∂X0).
The mapping property (3.3) follows by duality. �

Remark 2. In lemma 3.1 all the structure of the basis of the eigenvectors of Hin and 
Y

disappears. The question which we address in section 4 is how close the approximation based
on using only finitely many basis elements gets to the actual scattering matrix. Then for
a = (N,�) ∈ [0,∞]2 we define

Wa(k)t
def= Pk11[0,N](
Y )R11[0,�](Hin), Ru

def= u�∂X0
.

We note that

W(∞,∞)(k) = W(k),

and that for N < ∞ and � < ∞,

Wa(k) : D′(Y ) −→ C∞(X0), Wa(k)t : Ḋ′(X0) −→ C∞(Y ),

where C∞(X0) denotes extendable smooth functions on the compact manifold X0.

We make the definition (1.6) of Heff rigorous via the quadratic form

q(u, v) = q(k)(u, v) =
∫

X0

∇u∇v dvolX0 − i
∫

∂X0

Wt(k)uW ∗(k)v dvolY

=
∫

X0

∇u∇v dvolX0 − i
∫

∂X0

PkRuP ∗
k Rv dvolY

with form domain H 1(X0). If

q(u, v) = (w, v)

for some w ∈ L2(X0) and all v ∈ H 1(X0), then u is in the domain of Heff and Heffu = w.

Moreover,

(w, v) = q(u, v) = −
∫

X0


X0uv +
∫

∂X0

(
∂nu − iP 2

k Ru
)
v,

where ∂nu denotes the outward unit normal derivative at the boundary. Since this must hold
for all v ∈ H 1(X0),−
X0u = w and

0 = ∂nu − iP 2
k Ru.

We note that u ∈ H 2(X0) where the space is defined by restricting elements of H 2(X) to
X0—see [7, appendix B]. We summarize this in the following:

Lemma 3.2. Suppose u ∈ Domain(Heff). Then u ∈ H 2(X0), and

Heffu = −
X0u, ∂nu − iP 2
k Ru = 0.

6
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Next we investigate the relation between (k2 − Heff)
−1 and the resolvent of the Laplacian

on X. Denote

RX(k)
def= (k2 + 
X)−1, for Im k > 0.

Then, for K ⊂ X any compact set 11KRX(k)11K has a meromorphic extension to �σ(
∂X0 ),
see [10]. In lemma 4.1 we shall show that (k2 − Heff)

−1 : L2(X0) → H 2(X0) exists for
k2 � 0, Im k > 0, and is meromorphic on �σ(
∂X0 ), the Riemann surface (2.3). One could
provide an alternate proof using the first part of the proof of lemma 3.3 and the results of [10]
on the meromorphic continuation of RX(k).

We remark that when we use k ∈ �σ(
∂X0 ), by abuse of notation we mean by k2 the
complex number which is the continuation of k2 from the physical half-plane Im k � 0.

Lemma 3.3. We have the following relation between RX(k) as defined above and
(k2 − Heff)

−1 = (k2 − Heff(k))−1:

(k2 − Heff)
−1 = 11X0RX(k)11X0

for k ∈ �σ(
∂X0 ). In particular, the poles of (k2 − Heff)
−1 are the same as the poles of RX(k).

Proof. Suppose g ∈ L2(X0) ⊂ L2(X) and g is 0 in a neighborhood of ∂X0. Then(
k2 + 
X0

)
11X0RX(k)g = (

k2 + 
X0

)
11X0RX(k)11X0g = g on X◦

0 (3.5)

for k ∈ �σ(
∂X0 ).

Note that since suppg ⊂ X0, (k
2 + 
X)g = 0 on X1. Then for Im k > 0 (that is, for k in

the physical space), the requirement that RX(k)g ∈ L2(X) means that

RX(k)g�X1
=

∑
aλ eikλxϕλ (3.6)

for some constants aλ = aλ(k). But then, using the support conditions of g there is a
neighborhood Ũ ⊂ X0 of ∂X0 so that

RX(k)g�Ũ =
∑

aλ eikλxϕλ.

Thus, (
∂n − iP 2

k

)
(RX(k)g�X0

)�∂X0
= 0

so that RX(k)g�X0
is in the domain of Heff = Heff(k). Together with (3.5), this means that

(k2 − Heff)
−1g = 11X0RX(k)g

for all k with Im k > 0 and all g ∈ L2(X0) which are 0 in a neighborhood of ∂X0. Since such
g are dense in L2(X0), this must in fact hold for all g ∈ L2(X0).

Since (k2 − Heff)
−1 = 11X0RX(k)11X0 for all k with Im k > 0 and since both sides have

meromorphic continuations to �σ(
∂X0 ) (see [10] and lemma 4.1), they must in fact agree for
all k ∈ �σ(
∂X0 ). �

Lemma 3.4. Suppose (k2 − Heff)
−1 exists. For f ∈ H 1(∂X0), let

u = (k2 − Heff)
−1W(k)f.

Then

(k2 + 
X0)u = 0 on X◦
0,

(
∂n − iP 2

k

)
u�∂X0

= −Pkf. (3.7)

Proof. We first claim that there exists F ∈ H 2(X0) such that(
∂n − iP 2

k

)
F�∂X0

= −Pkf. (3.8)

7
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In fact, for 0 < h � 1 define N(h) : Hs(∂X0) → Hs−1(∂X0) as follows:

N(h) = 1

h
〈I − 
∂X0〉

1
2 , N(h)−1 = O(h) : Hs−1(∂X0) −→ Hs(∂X0).

Let χ ∈ C∞
0 ([0, ε)) be equal to 1 in a small neighborhood of 0, with ε chosen so that

X0 � (−ε, 0]x × ∂X0, near the boundary. We define (note that x < 0)

[T (h)g](x, y)
def= χ(−x) exp

(
x〈I − 
∂X0〉

1
2
/
h
)
g(y),

T (h) : Hs(∂X0) → Hs+ 1
2 (X0), s � 0,

so that

T (h)g�∂X0
= g, ∂nT (h)g�∂X0

= N(h)g.

For a fixed k, P 2
k = O(1) : H 3/2(∂X0) → H 1/2(∂X0), and hence, if h is small enough, we

have the following inverse:(
N(h) − iP 2

k

)−1 = N(h)−1(I − iP 2
k N(h)−1)−1

: H
1
2 (∂X0) −→ H

3
2 (∂X0).

Using this and the mapping properties of T (h) we construct

F
def= −T (h)

(
N(h) − iP 2

k

)−1
Pkf ∈ H 2(X0),

which satisfies (3.8).
We now set

v = F − (k2 − Heff)
−1(k2 + 
X0

)
F,

and observe that v satisfies equations (3.7). It remains to show that v = u.
To see that we let h ∈ C∞(X0), and apply Green’s formula to compute

((k2 − Heff)
−1(k2 + 
X0

)
F, h) = ((

k2 + 
X0

)
F, ((k2 − Heff)

−1)∗h
)

=
∫

∂X0

(
∂nF ((k2 − Heff)−1)∗h − F∂n((k2 − Heff)−1)∗h

)
+ (F,

(
k2 + 
X0

)
((k2 − Heff)

−1)∗h)

=
∫

∂X0

(
∂nF ((k2 − Heff)−1)∗h − F∂n((k2 − Heff)−1)∗h

)
+ (F, h).

Now we use that ∂nF�∂X0
= iP 2

k (F�∂X0
) − Pkf , and that

w ∈ H 2(X0) ∩ Domain((k2 − Heff)
∗) �⇒ ∂nw�∂X0

+ i
(
P 2

k

)∗
Rw = 0.

Thus we have

((k2 − Heff)
−1(k2 + 
X0

)
F, h)

=
∫

∂X0

((
iP 2

k (F�∂X0
) − Pkf

)
((k2 − Heff)−1)∗h − iF

((
P 2

k

)∗
(k2 − Heff)−1

)∗
h
)

+ (F, h)

= −
∫

∂X0

Pkf ((k2 − Heff)−1)∗h + (F, h) =
∫

X0

(−(k2 − Heff)
−1δX0Pkf + F)h̄,

where the last expression follows from the definition of δ∂X0 . Since this holds for all
h ∈ C∞(X0),

v = F − (k2 − Heff)
−1(k2 + 
X0

)
F = (k2 − Heff)

−1δX0Pkf = u,

proving the lemma. �

8
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We can now state and prove the main result of this section. It provides a justification of
(1.5) and (1.7).

Proposition 3.5. Let W be given by (3.1). Then the λλ′ entry of the scattering matrix defined
in section 2 is given by

Sλ,λ′(k) = 〈Sf (k)ϕλ, ϕλ′ 〉L2(∂X0), (3.9)

where

Sf (k) = −(I − 2iW(k)t (k2 − Heff)
−1W(k)),

and Heff is defined in lemma 3.2.

Proof. We use lemma 3.4 to express the action of (k2 − Heff)
−1W(k). Suppose vλ =

(k2 − Heff)
−1W(k)ϕλ. Let U ⊂ X0 be a neighborhood of ∂X0. On U we may use coordinates

(x, y), with y ∈ Y . Since vλ lies in the null space of −
X0 − k2, we have that

vλ�U =
∑
λ′

(aλ′ eikλ′ x + bλ′ e−ikλ′x)ϕλ′(y).

The boundary conditions (3.7) applied to vλ at ∂X0 mean that∑
λ′

ikλ′(aλ′ − bλ′)ϕλ′ − i
∑
λ′

kλ′(aλ′ + bλ′)ϕλ′ = −Pkϕλ.

Then bλ = 1/(2i
√

kλ) and bλ′ = 0 if λ′ �= λ. Thus vλ is the restriction to X0 of −i�λ/2, where
�λ is determined by (2.1) and (2.2):

�λ�(0,∞)×Y = e−ikλx
ϕλ(y)√

kλ

+
∑
λ′

Sλ′λ eikλ′x ϕλ′(y)√
kλ′

. (3.10)

Therefore,

W(k)tvλ =
∑
λ′

√
kλ′aλ′ϕλ′ − i

2
ϕλ = − i

2

(∑
λ′

Sλ′λϕλ′ + ϕλ

)
,

which proves the proposition. �

Equation (3.9) is valid for all real values of k (that is, k on the boundary of the physical
space) with k2 > σ 2

λ , σ 2
λ′ , since the matrix coming from the right-hand side is unitary and hence

the singularities of 〈Sf (k)ϕλ′ , ϕλ〉L2(∂X0) resulting from poles of (Heff − k2)−1 are removable.

4. Accuracy of approximations

Here we investigate the accuracy of the approximations made to use (1.5) in numerical
computations. Set

	
∂X0
� f

def= 11[0,�](−
∂X0)f for f ∈ L2(∂X0),

	in
Ng

def= 11[0,N](Hin)g for g ∈ L2(X0).

In parallel with this, we introduce

W∞,∞(k)
def= W(k), W∞,�(k)

def= W	
∂X0
� ,

WN,�(k)
def= 	in

NW(k)	
∂X0
� = 	in

NW∞,�(k),

and

H∞,∞
def= Heff, HN,�

def= Hin − iWN,�Wt
N,�, N ∈ R ∪ {∞}.

9
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Although WN,�,W∞,� depend on k, for simplicity we generally omit this in our notation.
Note that Heff,H∞,� and HN,� also depend on k. A quadratic form argument (see
lemmas 3.2 and 4.4), using the form domain H 1(X0), shows that if u is in the domain of
H∞,�, then ∂nu − iP 2

k 	
∂X0
� Ru = 0. However, for N < ∞ the domain of HN,� is the set of

elements of H 2(X0) which satisfy the Neumann boundary condition, ∂nu = 0.
Likewise, we define the approximations of the (full) scattering matrix obtained by using

the approximation HN,� of Heff by Sf,N,�:

Sf,N,�(k) = −(I − 2iWN,�(k)t (k2 − HN,�)−1WN,�(k)). (4.1)

In order to bound the error in these approximations, we shall first see how close 	
∂X0
�0

Sf,∞,�

is to 	
∂X0
�0

Sf,∞,∞, and then study the difference

	
∂X0
�0

(Sf,∞,� − Sf,N,�)	
∂X0
�0

.

4.1. Projection on ∂X0

We first analyze the approximation with a finite � and N = ∞. The spectral cut-off for the
boundary Laplacian, �, has to be taken large enough to guarantee that Im kλ > 0 for σ 2

λ > �.
The errors then come from evanescent modes and can be estimated using exponential decay.
We present the results in two lemmas.

Recall that Heff = Heff(k) is defined for k ∈ �σ(
∂X0 ).

Lemma 4.1. Let �σ(
∂X0 ) be the Riemann surface, given in (2.3), to which the resolvent
of −
X, (−
X − k2)−1, has a meromorphic continuation (see [10, section 6.7]). Then the
operators (k2 − Heff)

−1 and (k2 − H∞,�)−1 are meromorphic on �σ(
∂X0 ). If k2 − Heff =
k2 − Heff(k) is invertible, so is k2 − H∞,�(k) for � > �(k) sufficiently large, and

‖(k2 − Heff)
−1 − (k2 − H∞,�)−1‖L2→L2 � C�−1/2, � > �0(k).

Moreover, for k restricted to a compact set K ⊂ �σ(
∂X0 ) on which k2 − Heff is invertible, �0

and C can be chosen independently of k.

Proof. Recall that U is a neighborhood of ∂X0 which we may identify with (−ε, 0]x ×Y with
g�U = (dx)2 + gY . Choose χi ∈ C∞(X), i = 1, 2, so that each χi has support in U,χi = 1 in
a smaller neighborhood of the boundary, and

χ1χ2 = χ1, supp χ ′
2 ∩ supp χ1 = ∅.

Set R�,e(k) to be the operator on L2((−∞, 0] × Y ) defined by the Schwartz kernel

R�,e(k)(x, y; x ′, y ′) def=
∑

λ

1

2ikλ

(
eikλ|x−x ′ | +

(
1 − 	

∂X0
�

)
eikλ|x+x ′ |)ϕλ(y)ϕλ(y

′).

Note that R�,e(k) is a meromorphic function of k ∈ �σ(
∂X0 ) since kλ is holomorphic on
�σ(
∂X0 ). Let R∞,e(k) be the operator with Schwartz kernel given by∑

λ

1

2ikλ

eikλ|x−x ′ |ϕλ(y)ϕλ(y
′),

and set

E�(k) = (1 − χ1)(k
2 − Hin)

−1 + χ2R�,e(k)χ1, � ∈ R ∪ {∞}.
Then, for the same values of �,E�v satisfies the boundary conditions of H∞,�, that is(

∂n − iP 2
k 	

∂X0
�

)
E�v�∂X0

= 0,

10
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and is meromorphic on �σ(
∂X0 ). Moreover,(
k2 + 
X0

)
E�(k) = I − [


X0 , χ1
]
(k2 − Hin)

−1 + [
X0 , χ2]R�,e(k)χ1

def= I + K�(k)

where K�(k) is a compact operator. Moreover, K�(k) is a meromorphic function of k in
�σ(
∂X0 ) with finite-rank poles. When k ∈ iR+, ‖K�(k)‖ → 0 as k2 → −∞. Thus,
I + K�(k) is invertible for k ∈ iR+,−k2 � 0, and by analytic Fredholm theory (see for
instance [13, section 2.4]) we have that

(k2 − H∞,�(k))−1 = E�(k)(I + K�(k))−1

for k in the physical space, and it has a meromorphic continuation to �σ(
∂X0 ).
Now

‖E�(k) − E∞(k)‖L2→L2 � C max
σ 2

λ >�
|kλ|−1.

For k in a compact set of �σ(
∂X0 ) and σλ > � � �0(k), sufficiently large, we have Im kλ > 0,
and since

x ∈ supp χ ′
2, x ′ ∈ supp χ1 �⇒ |x − x ′|, |x + x ′| > ε0 > 0,

we have

‖K�(k) − K∞(k)‖L2→L2 � C max
σ 2

λ >�

|kλ| + 1

|kλ| e−ε0Im kλ/2.

This constant is independent of k. Thus, if � is big enough, I + K�(k) − K∞(k) is invertible
with small norm, and

‖(k2 − Heff)
−1 − (k2 − H∞,�)−1‖ � C�−1/2

for � sufficiently large (depending on k or K, ε0 and ‖(k2 − Heff)‖−1). The constant can be
chosen independently of k on a fixed compact set K where k2 − Heff is invertible. �

Remark 3. Using this lemma and definition (4.1) of Sf,∞,�, we can see that for � ∈ R+∪{∞},
P −1

k Sf,∞,�(k)Pk = −(
I − 2iP −1

k W∞,�(k)t (k2 − H∞,�)−1W∞,�(k)Pk

)
(4.2)

has a meromorphic continuation to �σ(
∂X0 ). The conjugation by Pk is necessary because
while P 2

k is a well-defined operator for k ∈ �σ(
∂X0 ), Pk is not. Thus the operators

W∞,�(k)Pk and P −1
k W∞,�(k)t are well defined on �σ(
∂X0 ), while in general W∞,�(k)

and Wt
∞,�(k) are not. The existence of the meromorphic continuation of (4.2) means that

(
√

kλ′/
√

kλ)〈Sf,∞,�(k)ϕλ′, ϕλ〉 has a meromorphic continuation to �σ(
∂X0 ).

Lemma 4.2. Fix �0 < ∞ and k so that k2 − Heff is invertible and Im kλ > 0 if σ 2
λ > �0.

Suppose f ∈ L2(∂X0) satisfies 	
∂X0
� f = f for � � �0. Then, for � � �0 such that

k2 − H∞,� is invertible, we have for some ε′ > 0∥∥P −1
k 	

∂X0
�0

(Sf (k) − Sf,∞,�(k))Pkf
∥∥

L2(∂X0)
� C max

σ 2
λ >�

(|kλ| exp(−ε′ Im kλ))‖f ‖L2(∂X0).

In particular, by lemma 4.1 this holds for all � sufficiently large depending on k. We note that
the constants C and ε′ can be chosen independently of k if k is restricted to a fixed compact
set K on which both k2 − Heff and k2 − H∞,� are invertible and for which Im kλ > 0 when
σ 2

λ > �0.

We note that since 	
∂X0
� f = f , the H 3/2 norm of f is bounded by a �-dependent multiple

of the L2 norm of f .

11
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Proof. For � ∈ [�0,∞) ∪ {∞}, set u� = (k2 − H∞,�)−1W∞,�Pkf . That means that u�

satisfies (
k2 + 
X0

)
u� = 0 on X◦

0,
(
∂nu� − iP 2

k 	
∂X0
� Ru�

) = −P 2
k f.

Choose χ ∈ C∞
c ((−ε/2, 0]) to be one in a neighborhood of 0. Since U ⊂ X0

is a neighborhood of ∂X0 which can be identified with (−ε, 0]x × Yy , we can consider
χ = χ(x) to be defined on X0 by extending it to be 0 outside of U. For g ∈ L2(X), define
	

∂X0
� χg ∈ L2(U) ⊂ L2(X0) via(

	
∂X0
� χg

)
(x, y) =

∑
σ 2

λ ��

ϕλ(y)

∫
y ′∈∂X0

(χ(x)g(x, y ′)ϕλ(y
′)) dvolY .

Then

u� = (1 − χ)u∞ + 	
∂X0
� χu∞ + (k2 − H∞,�)−1(k2 + 
X0

)(
1 − 	

∂X0
�

)
χu∞ (4.3)

since the function on the right-hand side satisfies the same boundary conditions as u� and is
in the null space of k2 + 
X0 .

Note that by using 	
∂X0
�0

f = f

u∞�U =
∑

σ 2
λ ��

(aλe−ikλx + bλ eikλx)ϕλ +
∑
σ 2

λ >�

bλ eikλxϕλ (4.4)

for some constants aλ, bλ, so that, using orthonormality of ϕλ’s,

‖u∞‖2
L2 � ‖u∞�U‖2

L2 �
∫ 0

−ε

∑
σ 2

λ >�

|bλ eikλx |2 dx

=
∫ 0

−ε

∑
σ 2

λ >�

|bλ eikλx |2 dx =
∑
σ 2

λ >�

|bλ|2 e2εIm kλ − 1

2 Im kλ

. (4.5)

Also, (
k2 + 
X0

)(
1 − 	

∂X0
�

)
χu∞ = [

∂2
x , χ

](
1 − 	

∂X0
�

)
χ̃u∞,

where χ̃ has the same properties as χ and χ̃χ = χ . Our argument below takes advantage of
the fact that the support of

[
∂2
x , χ

]
is contained in [−ε/2, 0], while the expansion (4.4) is valid

for x in (−ε, 0]. Hence,∥∥(
k2 + 
X0

)(
1 − 	

∂X0
�

)
χu∞

∥∥2 = ∥∥[
∂2
x , χ

](
1 − 	

∂X0
�

)
χ̃u∞

∥∥2

� C〈ε−4〉
∫ 0

−ε/2

∑
σ 2

λ >�

〈kλ〉2|bλ eikλx |2 dx

� C〈ε−4〉
∑
σ 2

λ >�

〈kλ〉2|bλ|2 eεIm kλ − 1

2 Im kλ

= C〈ε−4〉
∑
σ 2

λ >�

〈kλ〉2|bλ|2 eε2Im kλ − 1

2 Im kλ

(
1

eεIm kλ + 1

)
.

Thus (4.5) gives∥∥(
k2 + 
X0

)(
1 − 	

∂X0
�

)
χu∞

∥∥ � C〈ε−2〉‖u∞‖L2 max
σ 2

λ >�
(|kλ| e−εIm kλ/2).

Using (4.3), the estimate

‖(k2 − H∞,�)−1g‖H 1 � (1 + |k|)‖(k2 − H∞,�)−1g‖L2 ,

12
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and the previous lemma, we obtain∥∥	
∂X0
�0

R(u∞ − u�)
∥∥

L2(∂X)

� C〈ε−2 + |k|〉‖(k2 − H∞,�)−1‖‖u∞‖L2 max
σ 2

λ >�
(|kλ| e−εIm kλ/2).

Thus far each constant C can be chosen independent of k, though of course ‖u∞‖ depends
on k in a continuous fashion on compact sets on which k2 − Heff is invertible. Note that
P −1

k Pk	
∂X0
� = 	

∂X0
� is a bounded operator. Thus, using the expression for Sf , Sf,∞,� and the

previous lemma finishes the proof. �

4.2. The cut-off in the interior

We now turn our attention to the error introduced by using 	in
N . Throughout this section we

assume that � < ∞.
Our results will use the following standard:

Lemma 4.3. Suppose X̃ is a compact Riemannian manifold without boundary and χ ∈
C∞

0 (R) is equal to 1 in a neighborhood of 0. Suppose that Y ⊂ X̃ is a smooth embedded
submanifold of codimension 1. Then

‖(1 − χ(−h2
X̃))u�Y ‖L2(Y ) � C
√

h‖u‖H 1(X̃).

If v ∈ H 2(X̃\Y ) ∩ H 1(X̃), then

‖(1 − χ(−h2
X̃))v�Y ‖L2(Y ) � Ch‖v‖H 2(X̃\Y ).

Proof. Both statements in the lemma are local. In fact, if P is another elliptic second-order
operator on X̃, then for some constant CP the calculus of semiclassical pseudodifferential
operators (see for instance [4, appendix E]) shows that

(1 − χ(−h2
))(1 − χ(−h2CP (P + CP ))) = (1 − χ(−h2
)) + OH−k→Hk (hN),

for all N and k. Hence, we can use any other second-order elliptic operator and that property
is invariant under changes of coordinates.

It follows that we can assume that X̃ = R
n and Y = {x1 = 0}, R

n � x = (x1, x
′) (the

compactness is irrelevant for the local statement).
Denoting the Fourier transform by F we write

Fx ′ �→ξ ′
(
(1 − χ(−h2
X̃))u�Y

)
(ξ ′) =

∫
R

(1 − χ(h2|ξ |2))û(ξ1, ξ
′) dξ1. (4.6)

Hence, by the Cauchy–Schwartz inequality,

‖(1 − χ(−h2
X̃))u�Y ‖2
L2(Y ) � C

∫
R

n

F (ξ ′, h)(1 − χ(h2|ξ |2))|û(ξ)|2(1 + |ξ |2) dξ,

where

F(ξ ′, h)
def=

∫
R

(1 − χ(h2|ξ |2))(1 + |ξ |2)−1 dξ1

�
∫

|ξ1|>c/h

(1 + |ξ1|2)−1 dξ1 + 11|ξ ′|>c/h(ξ
′)

∫
R

(|ξ ′|2 + |ξ1|2)−1 dξ1

� Ch.

This proves the first part of the lemma.
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For the second part, we can assume that suppv ⊂ {x ∈ R
n : |x| � R} as we can localize

to a compact set. We then write

v̂(ξ) =
∫ R

0
(e−ix1ξ1Fx ′ �→ξ ′v(x1, ξ

′) + eix1ξ1Fx ′ �→ξ ′v(−x1, ξ
′)) dx1. (4.7)

Since v ∈ H 1(Rn),Fx ′ �→ξ ′v(0, ξ ′) ∈ L2(Rn−1) is well defined and hence we can integrate by
parts to obtain

v̂(ξ) = 1

ξ 2
1

∑
±

(
∓Fx ′ �→ξ ′∂x1v(0±, ξ ′) −

∫ R

0
e∓ix1ξ1Fx ′ �→ξ ′∂2

x1
v(±x1, ξ

′) dx1

)
.

Since v ∈ H 2
(
R

n
±
)
, ∂x1v(0±, ξ ′) is well defined in L2(Rn−1). We now use the following

decomposition:

(1 − χ(h2ξ 2))v̂ = v̂1 + v̂2, v̂1(ξ)
def= 11|ξ1|>c/h(ξ)(1 − χ(h2ξ 2))v̂(ξ),

noting that |ξ ′| > c/h on the support of v̂2(ξ). We first estimate the contribution of v2 as in
the proof of the first part of the lemma:

‖v2�Y ‖2
L2(Y ) � C

∫
R

n

G(ξ ′, h)|v̂(ξ)|2(1 + |ξ ′|2)2 dξ

� max
ξ ′∈R

n−1
G(ξ ′, h)‖v‖2

H 2(X̃\Y )
,

where

G(ξ ′, h)
def=

∫
|ξ1|<c/h

(1 − χ(h2|ξ |2))(1 + |ξ ′|2)−2 dξ1

� 11|ξ ′|>c/h(ξ
′)

∫ 2c/h

0
(1 + |ξ ′|2)−2 dξ1

� Ch3,

which is a better estimate than needed.
To estimate the contribution of v1 we use (4.7):

‖v1�Y ‖2
L2(Y ) � CR‖v‖2

H 2(X̃\Y )

(∫
|ξ1|>1/h

1

ξ 2
1

dξ1

)2

� CRh2‖v‖2
H 2(X̃\Y )

,

which completes the proof. �

Like Heff,HN,� = HN,�(k) is a well-defined operator for k ∈ �σ(
∂X0 ).

Lemma 4.4. Fix � < ∞, and suppose that k2 − H∞,� is invertible, k ∈ �σ(
∂X0 ). Then, for
N sufficiently large, k2 − HN,� is invertible, and

‖(k2 − H∞,�)−1 − (k2 − HN,�)−1‖H−1(X0)→H 1(X0) � CN−1/4.

The constant C can be chosen uniformly for k in a compact set K ⊂ �σ(
∂X0 ) on which
k2 − H∞,� is invertible.

Proof. As in section 3 we will use quadratic forms to reinterpret our operators. Thus, for
N ∈ R+, E ∈ C, set

q∞,�(k, E)(u, v) =
∫

X0

∇u∇v − i
∫

∂X0

Wt
∞,�uW ∗

∞,�v − E

∫
X0

uv

=
∫

X0

∇u∇v − i
∫

∂X0

Pk	
∂X0
� RuP ∗

k 	
∂X0
� Rv − E

∫
X0

uv

14
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and

qN,�(k,E)(u, v) =
∫

X0

∇u∇v − i
∫

∂X0

Wt
N,�uW ∗

N,�v − E

∫
X0

uv

=
∫

X0

∇u∇v − i
∫

∂X0

Pk	
∂X0
� R	in

NuP ∗
k 	

∂X0
� R	in

Nv − E

∫
X0

uv.

Here we take both form domains to be H 1(X0). The quadratic forms q∞,�(k, E) and
qN,�(k,E) are associated with operators H∞,� − E and HN,� − E respectively. We expand
the difference of the quadratic forms as follows:

q∞,�(k, E)(u, u) − qN,�(k,E)(u, u)

=
∫

∂X0

(∣∣Pk	
∂X0
� Ru

∣∣2 − ∣∣Pk	
∂X0
� R	in

Nu
∣∣2)

=
∫

∂X0

((
Pk	

∂X0
� Ru

)
Pk	

∂X0
� R

(
I − 	in

N

)
u + Pk	

∂X0
� R

(
I − 	in

N

)
uPk	

∂X0
� R	in

Nu
)
.

We have the following estimates:∥∥	
∂X0
� R

(
I − 	in

N

)
u
∥∥

H�(∂X0)
� C�,�

∥∥R
(
I − 	in

N

)
u
∥∥

L2(∂X0)
� C�,�N−1/4‖u‖H 1(X0)∥∥	

∂X0
� Ru

∥∥
H�(∂X0)

� C�,�‖Ru‖L2(∂X0) � C�,�‖u‖H 1(X0).
(4.8)

To obtain the first, we apply lemma 4.3 to X̃
def= X0 � X◦

0 where the metric on X̃ is obtained
by reflecting the metric on X0 through Y = ∂X0. Since the metric has product structure near
Y this means that

H 1(X0) � H 1
ev(X̃)

(here ev refers to even functions) and the action of the Neumann Laplacian on X0 is the same
as the action of 
X̃ on even functions. Applying lemma 4.3 with h = 1/

√
N gives (4.8).

Applying (4.8) to estimate the difference of the quadratic forms we obtain, for E � 0,

|q∞,�(k, E)(u, u) − qN,�(k,E)(u, u)| � C�(k)N−1/4‖u‖2
H1

� C�(k)N−1/4 Re(q∞,�(k, E)(u, u)).

The constant depends continuously on k. Here we use the fact that Im kλ > 0 for all but finitely
many λ, ensuring that Re q∞,�(k, E)(u, u) bounds ‖u‖2

H 1(X0)
from above for E � 0. Thus,

by [8, theorem 3.4],

‖(H∞,� − E)−1 − (HN,� − E)−1‖L2(X0)→L2(X0) � CN−1/4

for N sufficiently large depending on E, k and �. This dependence on k is continuous on
regions where k2 − H∞,� is invertible. To extend this to other values of E (in particular,
E = k2), we use

(A − z)−1 = {I − (I + (z − z0)(B − z)−1)(z − z0)((A − z0)
−1 − (B − z0)

−1)}−1

× (I + (z − z0)(B − z)−1)(A − z0)
−1. (4.9)

Consequently, if k2 − H∞,� is invertible, so is k2 − HN,� for sufficiently large N, with

‖(k2 − H∞,�)−1 − (k2 − HN,�)−1‖L2(X0)→L2(X0) � CN−1/4.

Here the constant will depend on k and �, as will the lower bound on the N for which this
holds. These can be chosen uniformly if k is restricted to lie in K.
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Now we show that there is a similar bound from H−1(X0) to H 1(X0). We choose E so
that Re(q∞,�(k, E)(u, u)) � c0‖u‖2

H 1(X0)
for some c0 > 0 and all u ∈ H 1(X0). Suppose

w ∈ L2(X0) and set u = (H∞,� − E)−1w, uN = (HN,� − E)−1w. Then

c0‖u‖2
H 1 � Re(q∞,�(k, E)(u, u)) = Re(w, u)

so that

c0‖u‖H 1 � ‖w‖H−1 .

This shows that we can (uniquely) continuously extend (H∞,� − E)−1 to be a bounded
operator from H−1(X0) to H 1(X0) when E � 0 (the duality argument shows that we can
extend the operator to the dual of H 1(X0) and H−1(X0) is contained in that dual as the space
of elements of H−1(X) supported in X0). The resolvent equation extends this to other values
of E. Likewise,

c0‖u − uN‖2
H 1 � Re(q∞,�(k, E)(u − uN, u − uN))

= Re(q∞,�(k, E)(u, u − uN) − q∞,�(k, E)(uN, u − uN))

= Re((w, u − uN) − (w, u − uN)

+ qN,�(k,E)(uN, u − uN) − q∞,�(k, E)(uN, u − uN))

� CN−1/4‖uN‖H 1‖u − uN‖H 1

� CN−1/4(‖u‖H 1 + ‖u − uN‖H 1)‖u − uN‖H 1 .

We allow the constant C to change from line to line. This implies that

‖u − uN‖H 1 � CN−1/4(‖u‖H 1 + ‖u − uN‖H 1),

which then means that for sufficiently large N

‖u − uN‖H 1 � CN−1/4‖u‖H 1 .

Using (4.9) this can be extended to other values of E. Again, these constants can be chosen
uniformly for k ∈ K . �

Lemma 4.5. Fix � < ∞ and k so that k2 − H∞,� is invertible and Im kλ > 0 if σ 2
λ > �.

Suppose f ∈ L2(∂X0) satisfies 	
∂X0
� f = f . Then, for N so that k2 −HN,� is invertible, there

is a constant C depending on � and k so that∥∥	
∂X0
� P −1

k (Sf,∞,�(k) − Sf,N,�(k))Pkf
∥∥ � CN−1/2‖f ‖L2(∂X0).

The constant C can be chosen independently of k, if k is restricted to a compact set K ⊂ �σ(
∂X0 )

on which k2 − H∞,� and k2 − HN,� are invertible.

Proof. Choosing N so that k2 − HN,� is invertible, set

u∞ = (k2 − H∞,�)−1W∞,�Pkf and uN = (k2 − HN,�)−1WN,�Pkf.

That is, u∞ satisfies(
k2 + 
X0

)
u∞ = 0 on X◦

0

∂nu∞ − iP 2
k 	

∂X0
� Ru∞ = −P 2

k f

and uN satisfies, for N < ∞,(
k2 + 
X0 + iWN,�Wt

N,�

)
uN = WN,�Pkf on X◦

0

∂nuN�∂X0
= 0.

Note that our assumptions on f mean that the H 3/2 norm of f is bounded by a �-dependent
constant times the L2 norm of f .
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We wish to understand 	in
Nu∞. Let �n be a real eigenfunction of the Neumann Laplacian

on X0, with −
X0�n = τ 2
n�n. Suppose in addition that ‖�n‖L2(X0) = 1. Then(

τ 2
n − k2)(u∞, �n)L2(X0) = −

∫
X0

(
X0�nu∞ − �n
X0u∞) dvolX0

=
∫

∂X0

�n∂nu∞ dvolY

=
∫

∂X0

�n

(
iP 2

k 	
∂X0
� Ru∞ − P 2

k f
)

dvolY .

That is, (−
X0 − k2)	in
Nu∞ = iWN,�Wt

∞,�u∞ − WN,�Pkf.

Thus,

uN = 	in
Nu∞ − (k2 − HN,�)−1 (

(k2 − HN,�)	in
Nu∞ − WN,�Pkf

)
= 	in

Nu∞ + i(k2 − HN,�)−1WN,�

(
Wt

∞,� − Wt
N,�

)
u∞

= 	in
Nu∞ + i(k2 − HN,�)−1WN,�Pk	

∂X0
� R

(
I − 	in

N

)
u∞. (4.10)

The second part of lemma 4.3 gives the following estimate:∥∥R
(
1 − 	in

N

)
u∞

∥∥
L2(∂X)

� CN−1/2‖u∞‖H 2(X0),

and consequently,∥∥Pk	
∂X0
� R

(
I − 	in

N

)
u∞

∥∥ � CN−1/2‖u∞‖H 2(X0)

with constant C depending continuously on k.
Let g ∈ L2(∂X0), h ∈ H 1/2+(X0). Then Rh ∈ L2(∂X0), and

|(WN,�g, h)X0 | = ∣∣(g, P ∗
k 	

∂X0
� R	in

Nh
)
∂X0

∣∣ � ‖g‖L2(∂X0)‖h‖H 1/2+
(X0)

.

That is,

‖WN,�g‖H−1(X0) � ‖WN,�g‖H−1/2−(X0) � C‖g‖L2(X0)

and the constant is independent of N and depends continuously on k. On the other hand,
lemma 4.4 shows that for N sufficiently large

‖(k2 − HN,�)−1‖H−1(X0)→H 1(X0) � C.

Using these estimates in (4.10), we find that

‖u∞ − uN‖H 1 � CN−1/2,

implying the desired bound by restricting to ∂X0 and using again the fact that P −1
k Pk	

∂X0
� =

	
∂X0
� is a bounded operator. �

5. Proofs of theorems

Our proof of the theorem in section 1 will use the unitarity for k real not only of the finite-
dimensional scattering matrix defined by (1.7), but also of the approximations of the scattering
matrix obtained by introducing the projections 	in

N and 	
∂X0
� .

Lemma 5.1. Let k ∈ R. Then S(k) defined by (1.7) and 	
∂X0

k2 Sf,N,�(k)	
∂X0

k2 , for
�, N ∈ R+ ∪ {∞}, are unitary.

17
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Proof. That S(k) is unitary for k real is well known. It can be seen as follows. Recall that
S(k) = 	

∂X0

k2 Sf,∞,∞(k)	
∂X0

k2 .
We note that

(
P 2

k

)∗
ϕλ = kλϕλ and kλ is real for σ 2

λ � k2 and pure imaginary for σ 2
λ > k2.

Therefore,

	
∂X0

k2 Wt(k) = 	
∂X0

k2 W ∗(k) and
(
I − 	

∂X0

k2

)
Wt(k) = −(

I − 	
∂X0

k2

)
W ∗(k). (5.1)

Thus, we have

W(k)t∗	∂X0
� W ∗(k) + W(k)	

∂X0
� Wt(k) = 2W(k)	

∂X0
� 	

∂X0

k2 Wt(k). (5.2)

Using this and the resolvent identity gives

(k2 − HN,�)−1 − (k2 − H ∗
N,�)−1

= i(k2 − HN,�)−1(−	in
NWt∗	∂X0

� W ∗	in
N − 	in

NW	
∂X0
� Wt	in

N

)
(k2 − H ∗

N,�)−1

= −2i(k2 − HN,�)−1	in
NW	

∂X0

k2 	
∂X0
� Wt	in

N(k2 − H ∗
N,�)−1. (5.3)

Therefore,

	
∂X0

k2 Sf,N,�(k)	
∂X0

k2

(
	

∂X0

k2 Sf,N,�(k)	
∂X0

k2

)∗

= 	
∂X0

k2

(
I − 2iWt

N,�(k)(k2 − HN,�)−1WN,�(k)
)

×	
∂X0

k2

(
I + 2iW ∗

N,�(k)((k2 − HN,�)−1)∗
(
Wt

Nλ(k)
)∗)

	
∂X0

k2

= 	
∂X0

k2

(
I − 2iWt

N,�(k)
[
(k2 − HN,�)−1 − (k2 − H ∗

N,�)−1] WN,�(k)

+ 4Wt
N,�(k2 − HN,�)−1WN,�	

∂X0

k2 Wt
N,�(k)(k2 − H ∗

N,�)−1WN,�(k)
)
	

∂X0

k2

(5.4)

where we have used (5.1). Applying identity (5.3) we find that

	
∂X0

k2 Sf,N,�(k)	
∂X0

k2

(
	

∂X0

k2 Sf,N,�(k)	
∂X0

k2

)∗ = I (5.5)

as desired. �

Theorem 2. Let X be a manifold with infinite cylindrical ends, and Sλλ′(k), Sf,N,�(k)

be as defined via (2.1), (2.2) and (4.1). Suppose k ∈ �σ(
∂X0 ) and �0 ∈ R are such that
k2 − Heff = k2 − Heff(k) is invertible, and Im kλ > 0 if σ 2

λ > �0. Then, for σ 2
λ , σ 2

λ′ � �0

and � � �0, √
kλ′√
kλ

Sλλ′(k) = 〈P −1
k Sf,N,�(k)Pkϕλ′ , ϕλ〉 + O(N− 1

2 + e−�/C).

We recall that k2 −Heff is invertible if k is in the physical space with Im k > 0, Im kλ > 0
for all λ, and that (k2 − Heff)

−1 is meromorphic on �σ(
∂X0 ).

Proof. The proof follows from writing
√

kλ′√
kλ

Sλλ′(k) = 〈
P −1

k Sf (k)Pkϕλ′ , ϕλ

〉
= 〈

P −1
k Sf,N,�(k)Pkϕλ′ , ϕλ

〉
+

〈
P −1

k (Sf (k) − Sf,∞,�(k))Pkϕλ′ , ϕλ

〉
+

〈
P −1

k (Sf,∞,�(k) − Sf,N,�(k))Pkϕλ′ , ϕλ

〉
, (5.6)

where we note that the first equality follows from proposition 3.5. Applying lemmas 4.2 and
4.5, we obtain the theorem. �
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We now prove theorem 1.

Proof. If k2 − Heff is invertible this is just theorem 2, and hence it remains to prove that the
estimate is valid for all k ∈ R, even if k2 − Heff is not invertible.

Using the unitarity proved in lemma 5.1, along with the fact that σ 2
λ′ � k2, σ 2

λ � k2, we
see that each of the terms on the right-hand side of (5.6) is bounded for all k ∈ R. Also, for
N, � ∈ R+ ∪ {∞} (

√
kλ′/

√
kλ)〈Sf,N,�(k)ϕλ, ϕλ′ 〉 has a meromorphic extension to �σ(
∂X0 ),

as can be seen from formula (4.1) and the fact that (k2 −HN,�)−1 continues meromorphically
to �σ(
∂X0 ). Hence

k ∈ (−σλ, σλ) ∩ (−σλ′ , σλ′)

has a neighborhood in �σ(
∂X0 ) on which 〈Sf,N,�ϕλ′ , ϕλ〉 is holomorphic, N,� ∈ R+ � {∞}.
We will now apply the maximum principle: (5.6) and lemmas 4.2 and 4.5 show that

Sλλ′ − 〈Sf,N,�ϕλ′ , ϕλ〉
is bounded by C(N− 1

2 + e−�/C) on the boundary of the neighborhood chosen above, since
(k2 − Heff)

−1 is bounded there. The theorem follows as the difference is holomorphic.
In other words, we have shown that the theorem holds when k ∈ R is on the boundary of

the physical space even if k is a pole of (k2 − Heff)
−1, as long as k2 �= σ 2

λ , σ 2
λ′ .

To finish the proof, consider what happens at a point k0 ∈ R, k2
0 = σ 2

λ � σ 2
λ′ . (The

case σ 2
λ < σ 2

λ′ follows by symmetry.) If σ 2
λ = σ 2

λ′ , then since
√

kλ′/
√

kλ = 1 (except for
the removeable singularity at kλ = 0), 〈Sf,N,�(k)ϕλ′ , ϕλ〉 has a meromorphic extension to a
neighborhood of k0 in �σ(
∂X0 ). The boundedness at k0, again obtained from unitarity, ensures
that there exists a neighborhood of k0 on which 〈Sf,N,�ϕλ′ , ϕλ〉 is holomorphic. Thus the
previous argument using the maximum principle holds here as well.

Now suppose σ 2
λ′ < σ 2

λ = k2
0, and set Tλλ′(k) = (

√
kλ′/

√
kλ)Sλλ′(k). Then Tλλ′ is

meromorphic in a neighborhood of k0. Using the unitarity of S(k) for k real,

|Tλλ′(k)|2 � |kλ′ ||kλ|−1 for k2 � σλ2 , k ∈ R.

Thus,
√

kλTλλ′(k) is bounded at k0, and Tλλ′ must then also be bounded at k0, since near k0 it is
a meromorphic function of kλ. Therefore, Sλλ′(k0) = 0. Since we have in fact only used the
unitarity of S(k) for k ∈ R and the existence of a meromorphic extension, the same argument
gives

〈Sf,N,�(k)ϕλ′ , ϕλ〉�k=k0
= 0 for σ 2

λ′ < σ 2
λ = k2

0, N,� ∈ R+ ∪ {∞}.
Thus the approximation is exact in this special case. �

6. An example

In this section, we consider the simplest one-dimensional example where things are explicitly
computable and we are able to see the effects of the approximation 	in

N explicitly. Figure 2
illustrates the example that we analyze in this section.

Let X = (−π,∞), with X0 = (−π, 0] and X1 = [0,∞). We consider the operator
−∂2

x on X, with Neumann boundary conditions. Although strictly speaking this example does
not fall in the class considered in the first part of the note (X has a boundary, {−π}), it
is easy to see the arguments of the previous sections follow-through, with ∂X0 replaced by
Y = {0}. Because Y is a point, the full scattering matrix is a scalar, and is easily computed to
be S(k) = e2πik .
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Figure 2. An illustration of the example in section 6: the top figure shows the real parts of the
approximation and of the scattering matrix, and the lower one, the graphs of |SM2 (k) − S(k)| for
different values of M.

(This figure is in colour only in the electronic version)

For this example,

�n(x) =
{
π−1/2 if n = 0
(2/π)1/2 cos(nx) if n > 0.

Since there is no sense in the cut-off 	
∂X0
� for this problem, we use only one subscript on our

approximations of W :

WM2(k)
def=

√
k

M∑
n=0

�n(0)�n(x).

Similarly, we denote the approximation of S(k) thus obtained by SM2(k). In the notation of
the paper M = √

N . We denote by W̃M2 = W̃M2(k) the M + 1 vector π−1/2(1,
√

2, . . . ,
√

2)t .
Note that if iata �= −1,

(I + iaat )−1 = I − i(1 + iata)−1aat .

Set DM2 = DM2(k) to be the M + 1 × M + 1 matrix given by ((k2 − n2)δnm). We see that
when k �∈ Z so that DM2(k) is invertible, the approximation SM2(k) is given by

SM2(k) = −1 + 2iW̃ t
M2

(
DM2 + iW̃M2W̃ t

M2

)−1
W̃M2

= −1 + 2i
(
D

−1/2
M2 W̃M2

)t(
I + iD−1/2

M2 W̃M2

(
D

−1/2
M2 W̃M2

)t)−1
D

−1/2
M2 W̃M2 .
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Set BM2 = D
−1/2
M2 W̃M2 and βM2 = Bt

M2BM2 . Then, for k �∈ Z,

SM2(k) = −1 + 2iBt
M2

(
I − i(1 + iβM2)−1BM2Bt

M2

)
BM2

= −1 + 2i

(
βM2 − i

β2
M2

1 + iβM2

)
. (6.1)

Now

βM2 = 1

π

(
1

k
+

M∑
n=1

2k

k2 − n2

)
. (6.2)

We note that

lim
M→∞

βM2 = cot πk;
one can use this and (6.1) to see that

lim
M→∞

SM2(k) = e2πik = S(k)

when k2 �∈ N0. Using (6.1) and (6.2), we see that for k ∈ R\Z and M > |k|,
C1/M � |SM2(k) − S(k)| � C2/M

for some positive constants C1, C2 depending on k. Since M = √
N , this shows that the

estimates obtained in lemma 4.5 and in the main theorem are optimal.
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